Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness

Author:

Fiala N. J.1,Jaswal I.1,Ames F. E.1

Affiliation:

1. Department of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202

Abstract

Heat transfer and film cooling distributions have been acquired for a vane trailing edge with letterbox partitions. Additionally, pressure drop data have been experimentally determined across a pin fin array and a trailing edge slot with letterbox partitions. The pressure drop across the array and letterbox trailing edge arrangement was measurably higher than for the gill slot geometry. Experimental data for the partitions and the inner suction surface region downstream from the slot have been acquired over a four-to-one range in vane exit condition Reynolds number (500,000, 1,000,000, and 2,000,000), with low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios (0.47≤M≤1.9). Heat transfer distributions on the inner suction surface downstream from the slot ejection were found to be dependent on both ejection flow rate and external conditions. Heat transfer on the partition side surfaces correlated with both exit Reynolds number and blowing ratio. Heat transfer on partition top surfaces largely correlated with exit Reynolds number but blowing ratio had a small effect at higher values. Generally, adiabatic film cooling levels on the inner suction surface are high but decrease near the trailing edge and provide some protection for the trailing edge. Adiabatic effectiveness levels on the partitions correlate with blowing ratio. On the partition sides adiabatic effectiveness is highest at low blowing ratios and decreases with increasing flow rate. On the partition tops adiabatic effectiveness increases with increasing blowing ratio but never exceeds the level on the sides. The present paper, together with a companion paper that documents letterbox trailing edge aerodynamics, is intended to provide engineers with the heat transfer and aerodynamic loss information needed to develop and compare competing trailing edge designs.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3