Gill Slot Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness

Author:

Ames F. E.1,Fiala N. J.1,Johnson J. D.1

Affiliation:

1. University of North Dakota, Grand Forks, ND

Abstract

Heat transfer and film cooling distributions have been acquired downstream from the exit of a nozzle guide vane gill slot (or cutback). Additionally, heat transfer and pressure drop data have been experimentally determined for a pin fin array within the gill slot geometry. Generally, average row pin fin heat transfer levels for the converging channel correlate quite well with archival literature. However, no generalized flow friction factor correlation was found to predict the pressure drop within the array. Experimental data for the region downstream from the gill slot have been acquired over a four to one range in vane exit condition Reynolds number, with low, grid, and aero-combustor turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios. Heat transfer distributions downstream from the gill slot ejection were found to be dependent on both ejection flow rate and external conditions. Generally, adiabatic film cooling levels are high but dissipate toward the trailing edge and provide some protection on the trailing edge. Heat transfer levels on the trailing edge are affected largely by the chord exit Reynolds number and the suction surface boundary layer condition. The present paper, together with a companion paper which documents gill slot aerodynamics, is intended to provide designers with the heat transfer and aerodynamic loss information needed to compare competing trailing edge designs.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3