Comparison of Near-Wall Flow and Heat Transfer of an Internal Combustion Engine Using Particle Image Velocimetry and Computational Fluid Dynamics

Author:

Wu Angela1,Keum Seunghwan2,Greene Mark3,Reuss David3,Sick Volker4

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, 1231 Beal Avenue, 2026 Auto Lab, Ann Arbor, MI 48109 e-mail:

2. Modeling and Simulation, GM R&D, 30565 William Durant Boulevard, Warren, MI 48092 e-mail:

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

4. Professor Department of Mechanical Engineering, University of Michigan, 1231 Beal Avenue, 2007 Auto Lab, Ann Arbor, MI 48109 e-mail:

Abstract

In this study, computational fluid dynamics (CFD) modeling capability of near-wall flow and heat transfer was evaluated against experimental data. Industry-standard wall models for RANS and large-eddy simulation (LES) (law of the wall) were examined against the near-wall flow and heat flux measurements from the transparent combustion chamber (TCC-III) engine. The study shows that the measured, normalized velocity profile does not follow the law of the wall. This wall model, which provides boundary conditions for the simulations, failed to predict the measured velocity profiles away from the wall. LES showed a reasonable prediction in peak heat flux and peak in-cylinder pressure to the experiment, while RANS-heat flux was closer to experimental heat flux but lower in peak pressure. The measurement resolution is higher than that of the simulations, indicating that higher spatial resolution for CFD is needed near the wall to accurately represent the flow and heat transfer. Near-wall mesh refinement was then performed in LES. The wall-normal velocity from the refined mesh case matches better with measurements compared with the wall-parallel velocity. Mesh refinement leads to a normalized velocity profile that matches with measurement in trend only. In addition, the heat flux and its peak value matches well with the experimental heat flux compared with the base mesh.

Funder

National Science Foundation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3