Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine

Author:

Alkidas A. C.1,Myers J. P.1

Affiliation:

1. Engine Research Department, General Motors Research Laboratories, Warren, Mich. 48090

Abstract

Heat-flux measurements were obtained at several locations on the cylinder head and liner of a four-stroke, single-cylinder, spark-ignition engine. The variations of heat transfer with air-fuel ratio and volumetric efficiency were investigated. The magnitude of the heat flux was found to be highest at near-stoichiometric composition, whereas at either leaner or richer composition the heat flux decreased. An increase in volumetric efficiency from 40 to 60 percent resulted in an increase in peak heat flux of about 30 percent. The largest cycle-to-cycle variation in the measured heat flux occurred at the time of the initial high rate of heat flux. This is related to the cycle-to-cycle variation of flame propagation in the combustion chamber. Finally, the calculated amount of heat transferred to the walls of the combustion chamber during the closed portion of the engine cycle (intake valve closing to exhaust valve opening) agreed with the corresponding values obtained from the heat-flux measurements.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3