Effects of Stacked Layers and Stacked Configurations on Wire Sweep and Wire Sag of Advanced Overhang/Pyramid Stacked Packages

Author:

Kung Huang-Kuang1,Hsieh Chi-Lung2

Affiliation:

1. Professor Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City 83347, Taiwan e-mail:

2. Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City 83347, Taiwan e-mail:

Abstract

Overhang and/or pyramid stacked packages are the trend in the semiconductor industry. As the stacked layers increase drastically, the wire sweep and wire sag problems become more and more serious. Based on some types of frequently used stacked configurations, their corresponding wire sweep and wire sag stiffness and deflections are investigated for extra-high stacked layers. Two typical profiles of Q_loop and S_loop wire bonds are included in this study. However, wire sweep and wire sag have to be considered in two different design aspects. For wire sweep, we have the conclusion that the maximum wire sweep deflections always occur near the central segment of a wire bond. As for the wire sag, the maximum wire sag may take place in the center region of the straight portion of a wire bond. The result shows that the deflections of wire sag can be reduced significantly by simply shifting the position of the kink or bend created within a wire bond. Finally, we have concluded that a stacked configuration with smallest bond span may be the preferred selection for the concerns of wire sweep and wire sag issues.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3