Swing Touch Risk Assessment of Bonding Wires in High-Density Package Under Mechanical Shock Condition

Author:

Fu Guicui1,Jiang Maogong2,Wan Bo3,Li Yanruoyue4,Ma Cheng5

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, WeiMin Building 440, No. 37 XuanYuan Road, Beijing 100191, China e-mail:

2. School of Reliability and Systems Engineering, Beihang University, WeiMin Building 429, No. 37 XuanYuan Road, Beijing 100191, China e-mail:

3. School of Reliability and Systems Engineering, Beihang University, WeiMin Building 434, No. 37 XuanYuan Road, Beijing 100191, China e-mail:

4. School of Energy and Power Engineering, Beihang University, WeiMin Building 429, No. 37 XuanYuan Road, Beijing 100191, China e-mail:

5. China Aeronautical Radio Electronics Research Institute, No. 432 Ziyue Road, Minhang District, Shanghai 200241, China e-mail:

Abstract

Long bonding wires may swing significantly and touch with adjacent ones, which will result in short circuit under mechanical condition, especially in aerospace applications. This may seriously affect the operational reliability of high-density hermetic package components. The aim of this paper is to assess the touch risk of high-density package component under mechanical shock condition. An experiment setup, which can obtain the touch critical load and detect the wires swing touch through voltage signal captured by oscilloscope, is designed and built. To obtain the vibration data of different bonding wire structures under different shock loads, numerical simulation models are established after verified by the experimental data. Additionally, initial swing amplitude model, vibration frequency model, and damped coefficient model are established based on the simulation and experiment data. Furthermore, wire swing touch risk assessment model is established in consideration of the distribution of wire structure and shock load deviation. Based on the verified numerical simulation model, vibration characteristic parameters, including the initial swing amplitude, vibration frequency, and damped coefficient, can be calculated by numerical simulation and experimental results. The proposed method can be used to assess bonding wire touch risk in high-density hermetic package quantitatively. Potential touch risk, which cannot be reflected by failure analysis of structure damage after test, can also be detected by the electronic measurement designed in this paper. The proposed method can effectively reflect short circuit between long bonding wires of hermetic package in large shock applications, such as transport and launch.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3