High Resolution 2.5D PIV Measurements of the Flow Fields Generated by Small Fans

Author:

Hofer Dominik1,Krieger Michael1,Kirchhofer Martin2

Affiliation:

1. Johannes Kepler University Linz, Institute of Fluid Mechanics and Heat Transfer, Altenberger Straße 69, 4040 Linz, Austria

2. ZKW Lichtsysteme GmbH, Scheibbser Straße 17, 3250 Wieselburg, Austria

Abstract

Abstract The free jets of an axial and a centrifugal fan have been scanned by a specialized particle image velocimetry (PIV) set-up, which allows for volumetric scans of the time-averaged velocity field. Both of these fans have similar dimensions of approximately 70 mm x 70 mm x 25 mm. A classic PIV set-up was combined with a precise linear stage to move the fans through the laser fan beam in small steps, creating a dense array of measurement planes. Two components of the time-averaged velocity field are captured by the first 2.5D scan. Another scan, with the fan rotated by 90° about its outlet surface normal, captures the missing third velocity component. This article describes the details of the measurement set-up, and mentions measures concerning seeding, reflections, and calibration. In the signal processing stage, two independent sets of gathered image data have to be processed, producing two sets of velocity image frames. These are subsequently combined using gridded interpolation in order to obtain a 3D velocity field. Specifically devised software tools allow for a CFD-like analysis and visualization of the flow field. Typical parameters of the generated jets, like the spreading and rotation rates, are calculated from the measurement data and details of the outlet flow fields are investigated. The interpolated data are also used to analyze the influence of an assumed coarser measurement grid resolution on the results for the obtained outlet flow fields.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3