A Patch-Based Flow Field Reconstruction Method for Particle Image Velocimetry Data of Multistage Centrifugal Pumps

Author:

Xin Jiage1,Tong Zheming2,Zhu Weina3

Affiliation:

1. School of Mechanical Engineering, Zhejiang University , Hangzhou 310063, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University , Hangzhou 310063, China

3. Zhejiang Fuchunjiang Hydropower Equipment Co., Ltd. , Hangzhou 311504, China

Abstract

Abstract Particle image velocimetry (PIV) technology, which performs the full-field velocity measurement on the laser plane, plays a crucial role in studying complex flow structures in multistage centrifugal pumps. In particle image cross-correlation analysis, the flow field could be corrupted with outliers due to the background Gaussian imaging noise, insufficient illumination caused by optical obstruction, and particle slip caused by centrifugal forces. In this study, we propose a patch-based flow field reconstruction (PFFR) method for PIV data of multistage centrifugal pumps. Since natural images contain a large number of mutually similar patches at different locations, the instantaneous PIV data with a symmetric property is segmented to multiple patches. The flow field reconstruction is achieved by low-rank sparse decomposition, which exploits the information about similar flow characteristics present in patches. Furthermore, we illustrated the proposed PFFR on a large eddy simulation vorticity field and experimental data of a multistage centrifugal pump to evaluate its effectiveness. We also performed the three other data analysis methods. The results show that the proposed PFFR has a strong reconstruction ability to improve data reliability for the instantaneous flow field with outliers. When the outliers account for 20% of the total flow vectors, the average normalized root-mean-square error of PFFR-reconstructed data is 0.143, which is lower than the three other data methods by 21.9%–48.1%. The structural similarity is 0.702, which is higher than the three other data methods by 2.1%–9%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3