Computer Simulation of Mixed Convection of Alumina-Deionized Water Nanofluid Over Four In-Line Electronic Chips Embedded in One Wall of a Vertical Rectangular Channel

Author:

Ramu Nalla1,Ghoshdastidar P. S.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India

Abstract

Abstract This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. Thermal Frontiers in the Design and Packaging of Microelectronic Equipment;Bar-Cohen;J. Mech. Eng.,1983

2. Enhancing Thermal Conductivity of Fluids With Nanoparticles;Choi,1995

3. Heat Transfer and Pressure Drop Characteristics of Arrays of Rectangular Modules Encountered in Electronic Equipment;Sparrow;Int. J. Heat Mass Transfer,1982

4. Analysis of Laminar Mixed Convection in Shrouded Arrays of Heated Rectangular Blocks;Braaten;Int. J. Heat Mass Transfer,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3