Fully Developed Transport Constants of Annular Tubes, With Application to the Entrance Region

Author:

Bennett Ted D.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93117-5070

Abstract

Abstract Description of the laminar thermal entry problem in annular tubes has historically been limited to a few geometric cases that require piecing together classical Graetz series and Lévêque series solutions to span all values of the Graetz number. The current work uses a recently developed generalized correlation to describe the full range of Graetz numbers for any annular tube geometry. However, the correlation requires fully developed Nusselt number values that have only been accurately reported in tabular and graphical forms. Exact analytic solutions for the constant wall heat flux condition are developed in this work, and simplified correlations are proposed for all wall conditions that reproduce exact Nusselt number solutions to within ± 0.4%. Using these results, a modified version of the generalized Graetz problem correlation is developed to reproduce the most published Nusselt numbers for the thermal entry problem in an annular tube to be within ± 5%.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3