The Antifouling Effects of Copper-Oxide Filler Incorporated Into Paint-Based Protective Films Applied to Steam Surface Condenser Tubes

Author:

Reuter H. C. R1,Owen M.1,Goodenough J. L.2

Affiliation:

1. Department of Mechanical Engineering, Stellenbosch University, Stellenbosch 7599, South Africa

2. G-line Engineering, Durban 4051, South Africa e-mail:

Abstract

Paint-based protective films (PPFs) are used to protect condenser tubes from corrosion and erosion but have been shown to be susceptible to biofouling. Here, the biocidal properties of copper-oxide fillers incorporated into PPFs are explored in this paper. Specifically, two PPFs filled with 20% and 50% filler (by weight) are tested in parallel with a nonbiocidal ordinary epoxy PPF, and bare stainless steel tube. Using double-pipe co-current flow heat exchangers installed at a thermal power plant, actual cooling water exiting the condenser is evenly distributed between the test tubes. Heat transfer in the condenser is simulated by heated water flowing through each annulus of the double-pipe heat exchangers, thereby maintaining repeatable outer convection conditions. An exposure test of 125 days shows that the 50% biocide-filled PPF has the lowest fouling factor of all the tubes. The nonbiocidal epoxy has the highest fouling factor and the 20% filled PPF behaves similarly. Both of these are greater than the bare stainless steel control tube. The 50% filled PPF is compared to the fouling of an existing admiralty brass tube and the shapes of the fouling curves are similar. This evidence suggests that provided the filler concentration is sufficiently high, there is the potential for the copper-oxide filler to reduce the asymptotic composite fouling factor by virtue of its antibacterial properties.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3