A Two-Stage Focal Transformer for Human–Robot Collaboration-Based Surface Defect Inspection

Author:

Gao Yiping1,Gao Liang1,Li Xinyu1

Affiliation:

1. Huazhong University of Science and Technology School of Mechanical Science and Engineering, , 1037# Luoyu Road, Wuhan 430074 , China

Abstract

Abstract Human–robot collaboration has become a hotspot in smart manufacturing, and it also has shown the potential for surface defect inspection. The robot can release workload, while human collaboration can help to recheck the uncertain defects. However, the human–robot collaboration-based defect inspection can be hardly realized unless some bottlenecks have been solved, and one of them is that the current methods cannot decide which samples to be rechecked, and the workers can only recheck all of the samples to improve inspection results. To overcome this problem and realize the human–robot collaboration-based surface defect inspection, a two-stage Transformer model with focal loss is proposed. The proposed method divides the traditional inspection process into detection and recognition, designs a collaboration rule to allow workers to collaborate and recheck the defects, and introduces the focal loss into the model to improve the recognition results. With these improvements, the proposed method can collaborate with workers by rechecking the defects and improve surface quality. The experimental results on the public dataset have shown the effectiveness of the proposed method, the accuracies are significantly improved by the human collaboration, which are 1.70%∼4.18%. Moreover, the proposed method has been implemented into a human–robot collaboration-based prototype to inspect the carton surface defects, and the results also verify the effectiveness. Meanwhile, the proposed method has a good ability for visualization to find the defect area, and it is also conducive to defect analysis and rechecking.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue: Human–Robot Collaboration for Futuristic Human-Centric Smart Manufacturing;Journal of Manufacturing Science and Engineering;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3