Real-Time Self-Learning Optimization of Diesel Engine Calibration

Author:

Malikopoulos Andreas A.1,Assanis Dennis N.1,Papalambros Panos Y.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

Compression ignition engine technologies have been advanced in the past decade to provide superior fuel economy and high performance. These technologies offer increased opportunities for optimizing engine calibration. Current engine calibration methods rely on deriving static tabular relationships between a set of steady-state operating points and the corresponding values of the controllable variables. While the engine is running, these values are being interpolated for each engine operating point to coordinate optimal performance criteria, e.g., fuel economy, emissions, and acceleration. These methods, however, are not efficient in capturing transient engine operation designated by common driving habits, e.g., stop-and-go driving, rapid acceleration, and braking. An alternative approach was developed recently, which makes the engine an autonomous intelligent system, namely, one capable of learning its optimal calibration for both steady-state and transient operating points in real time. Through this approach, while the engine is running the vehicle, it progressively perceives the driver’s driving style and eventually learns to operate in a manner that optimizes specified performance criteria. The major challenge to this approach is problem dimensionality when more than one controllable variable is considered. In this paper, we address this problem by proposing a decentralized learning control scheme. The scheme is evaluated through simulation of a diesel engine model, which learns the values of injection timing and variable geometry turbocharging vane position that optimize fuel economy and pollutant emissions over a segment of the FTP-75 driving cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining learning and control in linear systems;European Journal of Control;2024-06

2. Artificial Intelligence in Diesel Engines;Diesel Engines - Current Challenges and Future Perspectives;2024-01-19

3. Intelligent Setpoint Optimization for a Range Extender Hybrid Electric Vehicle With Opposed Piston Engine;Journal of Dynamic Systems, Measurement, and Control;2023-12-06

4. Deep reinforcement learning to discover multi-fuel injection strategies for compression ignition engines;International Journal of Engine Research;2023-07-07

5. Automated function development for emission control with deep reinforcement learning;Engineering Applications of Artificial Intelligence;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3