Deep reinforcement learning to discover multi-fuel injection strategies for compression ignition engines

Author:

Wimer Nicholas T1ORCID,Henry de Frahan Marc T1ORCID,Yellapantula Shashank1

Affiliation:

1. Computational Science Center, National Renewable Energy Laboratory, Golden, CO, USA

Abstract

Over the past several decades, regulation of compression ignition engine emissions has become increasingly stringent as concern about the environmental and health implications of these emissions has grown. These changing constraints have led to a series of new, alternative fuel injection strategies that aim to maintain power output while reducing in-cylinder generated emissions by operating in the low-temperature combustion (LTC) regime. These advanced injection strategies are created and retuned for individual combinations of engine geometry, fuel, and emissions constraints. Deep reinforcement learning has been shown to be an effective alternative to traditional optimization approaches for highly combinatorial control problems, such as discovering the optimal injection schedules for compression ignition engines. In this study, we deploy a previously presented deep reinforcement learning framework to iteratively optimize a series of engine geometries over a range of increasingly strict NO x emissions regulations. We then examine the resulting injection schedules. We discuss the potential for using this deep reinforcement learning framework for fuel selection screening and for discovering unique injection strategies for different engine geometries and future emissions standards.

Funder

National Nuclear Security Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3