Eco-Technoeconomic Analyses of Natural Gas-Powered SOFC/GT Hybrid Plants Accounting for Long-Term Degradation Effects Via Pseudo-Steady-State Model Simulations

Author:

Lai Haoxiang1,Adams Thomas A.2

Affiliation:

1. McMaster University Department of Chemical Engineering, , 1280 Main Street W, Hamilton, ON L8S 4L8 , Canada

2. Norwegian University of Science and Technology Department of Energy and Process Engineering, , Trondheim 7034 , Norway

Abstract

Abstract In this study, four solid oxide fuel cell (SOFC) power plants, with natural gas (NG) as the fuel source, that account for long-term degradation were designed and simulated. The four candidate SOFC plants included a standalone SOFC plant, a standalone SOFC plant with a steam bottoming cycle, an SOFC/ (gas turbine) GT hybrid plant, and an SOFC/GT hybrid plant with a steam bottoming cycle. To capture dynamic behaviors caused by long-term SOFC degradation, this study employed a pseudo-stead-state approach that integrated real-time dynamic 1D SOFC models (degradation calculation embedded) with steady-state balance-of-plant models. Model simulations and eco-techno-economic analyses were performed over a 30-year plant lifetime using matlab simulink R2017a, aspen plus V12.1, and python 3.7.4. The results revealed that, while the standalone SOFC plant with a steam bottoming cycle provided the highest overall plant efficiency (65.0% LHV), it also had high SOFC replacement costs due to fast degradation. Instead, the SOFC/GT hybrid plant with a steam bottoming cycle was determined to be the best option, as it had the lowest levelized cost of electricity ($US 35.1/MWh) and the lowest cost of CO2 avoided (−$US100/ton CO2e).

Funder

Natural Sciences and Engineering Research Council of Canada

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3