Products Distribution and Synergistic Effects Analysis During Co-Pyrolysis of Agricultural Residues and Waste Tire Using Gas Chromatography/Mass Spectrometry

Author:

Wang Zhiwei1,Chen Yan1,Chen Gaofeng2,Sun Tanglei3,Zhang Mengju4,Wang Qun1,Wu Mengge5,Guo Shuaihua1,Yang Shuhua4,Lei Tingzhou3,Burra Kiran G.6,Gupta Ashwani K.6

Affiliation:

1. Henan University of Technology School of Environmental Engineering;, Institute for Carbon Neutrality, , Zhengzhou 450001 , China

2. Xiamen University College of Energy, , Xiamen 361102 , China

3. Changzhou University Institute of Urban and Rural Mining, , Changzhou 213164 , China

4. Henan Academy of Sciences , Zhengzhou 450046 , China

5. Henan University of Technology School of Environmental Engineering, , Zhengzhou 450001 , China

6. University of Maryland Department of Mechanical Engineering, The Combustion Laboratory, , College Park, MD 20742

Abstract

Abstract The co-thermal chemical conversion of biomass and waste tires is an important direction for the utilization of waste resources to produce renewable energy. In this study, the product distribution and synergistic effects during the co-pyrolysis of agricultural residues and waste tire were analyzed by a pyrolyzer coupled with a gas chromatograph/mass spectrometer (Py-GC/MS). Pyrolysis and co-pyrolysis products were analyzed at 550 °C and 650 °C for maize stalk (MS), wheat straw (WS), waste tire (WT) feedstocks, as well as mixtures of wheat straw-waste tire (WS:WT mass ratio of 1:1), and maize stalk-waste tire (MS:WT mass ratio of 1:1). The results showed that the co-pyrolysis of agricultural residues and waste tire promoted the release of phenols, aldehydes, and ketone derivatives, and reduced the formation of H2 and H2O. In addition, a relatively high content of aromatic hydrocarbons was obtained at 650 °C temperature, while 550 °C was optimal when considering the formation of ketones. The results showed a synergistic effect in the co-pyrolysis of biomass and waste tire.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3