Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification

Author:

Li Jinhu12,Burra Kiran G.3,Wang Zhiwei14,Liu Xuan15,Kerdsuwan Somrat6,Gupta Ashwani K.3

Affiliation:

1. The Combustion Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742;

2. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. The Combustion Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

4. Henan Key Lab of Biomass Energy, Energy Research Institute Co. Ltd., Henan Academy of Sciences, Zhengzhou 450008, China

5. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

6. King Mongkut's University of Technology North Bangkok, Waste Incineration Research Center, Bangkok 10800, Thailand

Abstract

Abstract Discarded cigarette butts contain polymers, biomass, and a variety of toxins that cause an adverse effect to the human health and environment for years. The cigarette residuals are not recyclable and often get mixed with other kinds of wastes so that much of this waste ends up in landfills. This study investigates the safe disposal of cigarette butts by the thermochemical pathways using pyrolysis and gasification. Mass loss during its thermal decomposition was examined first using a thermogravimetric analyzer. The effect of temperature on the pyrolysis and CO2-assisted gasification was then conducted using a semi-batch reactor with a focus on the flowrate of total syngas and its gas components. Syngas yield, energy recovery, as well as energy efficiency were calculated and compared. The effect of temperature on the CO2 consumption during the gasification process was also examined. The thermal decomposition of cellulose acetate, tar, and wrapping paper were the main contributors during the pyrolysis of cigarette butt. However, the gasification process mainly consisted of the pyrolysis, cracking, and reforming reactions in the gas phase and gasification of char derived from wrapping paper. An increase in temperature enhanced the syngas flowrate, syngas yield, and gas efficiency while decreasing the char yield and reaction time for both the processes. Energy recovery from gasification was higher than pyrolysis due to added CO generation. The maximum syngas energy of 13.0 kJ/g under the gasification condition at 1223 K was 67.2% higher as compared with the pyrolysis. High temperature strongly affected the gasification reaction, while it was negligible at a temperature lower than 1023 K. Complete conversion occurred during gasification at 1223 K that provided only ash residue. The CO2 gasification of cigarette butts provided an effective pathway to utilize 0.5 g CO2/g feedstock at 1223 K to form valuable CO by the Boudouard reaction. Compared with the gasification of other solid wastes, syngas energy yield from cigarette butts was found to be higher than syngas from polystyrene and polyethylene terephthalate. These results support the effectiveness of thermochemical pathways in the rapid conversion of cigarette butts to valuable syngas along with CO2 utilization.

Funder

US Office of Naval Research

National Natural Science Foundation of China

China Scholarship Council

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3