Near-Critical CO2-Assisted Liquefaction-Extraction of Biomass and Wastes to Fuels and Value-Added Products

Author:

Burra Kiran Raj Goud1,Sahin Murat1,Zheng Ying2,Gupta Ashwani K.1

Affiliation:

1. University of Maryland Department of Mechanical Engineering, , College Park, MD 20742

2. Western University Department of Chemical and Biochemical Engineering, , London, ON N6A 3K7 , Canada

Abstract

Abstract With the growing need for sustainable carbon-neutral liquid fuels, low-grade feedstocks, such as lignocellulosic biomass, and municipal solid wastes offer sufficient potential via thermochemical conversion. But the existing thermochemical means are limited in feed flexibility and scalability and require significant processing (energy and costs) of the intermediates. Bio-oil/biocrude intermediate from fast pyrolysis and hydrothermal techniques is impeded by issues of stability and oxygen content, along with hydrotreating viability. To address these issues, we investigated a novel pathway of near-critical CO2-assisted integrated liquefaction-extraction (NILE) technology in conceptual aspects for conversion of various biomass and municipal solid wastes into high-quality biocrude with high compatibility for co-hydrotreating with traditional fossil crude for liquid fuel needs in power and transportation sectors. Using supercritical CO2 for dewatering wet feedstocks, for liquefaction, and extraction for lighter biocrude has produced biocrude with lower oxygen content by 50%, lowered metal content by 90%, stable viscosity, low acidity, and good aging stability compared to that produced from hydrothermal liquefaction along with higher hydrotreating and co-hydrotreating compatibility. Hydrotreating of the biocrude extract from supercritical CO2 extraction also was feasible with no detected coke deposition, an oxygen content of 1%, and catalyst deactivation. The validation and capabilities of the NILE concept urge for its further development to obtain sustainable liquid fuels with lower greenhouse gas emissions and costs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference76 articles.

1. Sustainable Aviation Fuel: Review of Technical Pathways;Holladay,2020

2. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2:Environmental Sustainability Effects of Select Scenarios From Volume 1;Efroymson,2017

3. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy;Langholtz;Ind. Biotechnol.,2016

4. EPA , 2019, “Advancing Sustainable Materials Management: Facts and Figures Report,” United States Environmental Protection Agency.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3