A Topology Optimization Method With Constant Volume Fraction During Iterations for Design of Compliant Mechanisms

Author:

Liu Chih-Hsing1,Huang Guo-Feng2

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan e-mail:

2. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

This study presents a topology optimization method for design of complaint mechanisms with maximum output displacement as the objective function. Unlike traditional approaches, one special characteristic of this method is that the volume fraction, which is defined as the calculated volume divided by the full volume, remains the same value throughout the optimization process based on the proposed pseudodensity and sensitivity number update scheme. The pseudodensity of each element is initially with the same value as the prespecified volume fraction constraint and can be decreased to a very small value or increased to one with a small increment. Two benchmark problems, the optimal design of a force–displacement inverter mechanism and a crunching mechanism, are provided as the illustrative examples to demonstrate the effectiveness of the proposed method. The results agree well with the previous studies. The proposed method is a general approach which can be used to synthesize the optimal designs of compliant mechanisms with better computational efficiency.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3