Pulse Propagation in Fluid-Filled Tubes

Author:

Walker J. S.1,Phillips J. W.1

Affiliation:

1. Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, Ill.

Abstract

A new theory for the propagation of pressure pulses in an inviscid compressible fluid contained in a thin-walled elastic tube is presented. This theory represents an improvement over the classical waterhammer theory because the restriction that the speed of sound in the tube material must be much greater than that in the fluid has been removed and because the restriction that the pulse length must be much greater than the tube diameter has been somewhat relaxed. The new theory is applied to a water-filled copper tube with an axial impulsive force of very short duration applied either to a piston inserted in the anchored end of the tube or to a cap on the free end of the tube. Numerical solutions using the method of characteristics are presented, and comparison is made with the predictions of classical waterhammer theory. A check on the numerical solution is provided by the analytical solution for the capped tube and for the special case when the speeds of sound in the tube material and in the fluid are equal.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on water-hammer waves mechanical and theoretical foundations;European Journal of Mechanics - B/Fluids;2024-11

2. Comparative Analysis of Water Hammer Performance in Different Pipe Parameters with FSI;Journal of Experimental and Theoretical Analyses;2024-08-20

3. Numerical Modeling of Transient Flow in Pipe With Taking Into Account Fluid-Structure Interaction;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

4. Dynamic deformation reconstruction of propulsion system pipe based on inverse finite element method;Journal of Physics: Conference Series;2024-05-01

5. Utilizing Wavelet Transforms for Analysis of Transmission Characteristics of Water-Hammer Vibration Waves in Pipelines Installed in Soil, Water, or Air Environments;Journal of Pipeline Systems Engineering and Practice;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3