Modeling of Cube Array Roughness: RANS, Large Eddy Simulation, and Direct Numerical Simulation

Author:

Altland Samuel1,Xu Haosen H. A.1,Yang Xiang I. A.1,Kunz Robert1

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University , State College, PA 16802

Abstract

Abstract Flow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using direct numerical simulation (DNS) and large eddy simulation (LES), the ability of sublayer-resolved Reynolds-averaged Navier–Stokes (RANS) to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the d-type roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case: a low Reynolds number k–ϵ model, the Menter k–ω SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering

Reference49 articles.

1. Numerical Simulation of Flow Over Urban-Like Topographies and Evaluation of Turbulence Temporal Attributes;J. Turbul.,2015

2. Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface;Boundary-Layer Meteorol.,2016

3. The Many Faces of Turbine Surface Roughness;ASME J. Turbomach.,2001

4. Friction Factors for Pipe Flow;Trans. ASME,1944

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3