Performance Evaluation of ANCF Tetrahedral Elements in the Analysis of Liquid Sloshing

Author:

Zhang Dayu1,Grossi Emanuele2,Shabana Ahmed A.3

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

2. Exponent, 525 West Monroe Street, Suite 1050, Chicago, IL 60661

3. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607

Abstract

Abstract The performance of the absolute nodal coordinate formulation (ANCF) tetrahedral element in the analysis of liquid sloshing is evaluated in this paper using a total Lagrangian nonincremental solution procedure. In this verification study, the results obtained using the ANCF tetrahedral element are compared with the results of the ANCF solid element which has been previously subjected to numerical verification and experimental validation. The tetrahedral-element model, which allows for arbitrarily large displacements including rotations, can be systematically integrated with computational multibody system (MBS) algorithms that allow for developing complex sloshing/vehicle models. The new fluid formulation allows for systematically increasing the degree of continuity in order to obtain higher degree of smoothness at the element interface, eliminate dependent variables, and reduce the model dimensionality. The effect of the fluid/container interaction is examined using a penalty contact approach. Simple benchmark problems and complex railroad vehicle sloshing scenarios are used to examine the performance of the ANCF tetrahedral element in solving liquid sloshing problems. The simulation results show that, unlike the ANCF solid element, the ANCF tetrahedral element model exhibits nonsmoothness of the free surface. This difference is attributed to the gradient discontinuity at the tetrahedral-element interface, use of different meshing rules for the solid- and tetrahedral-elements, and the interaction between elements. It is shown that applying curvature-continuity conditions leads, in general, to higher degree of smoothness. Nonetheless, a higher degree of continuity does not improve the solution accuracy when using the ANCF tetrahedral elements.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3