Recent Advances in Liquid Sloshing Dynamics

Author:

Ibrahim R. A.1,Pilipchuk V. N.1,Ikeda T.2

Affiliation:

1. Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202

2. Faculty of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan

Abstract

A liquid free surface in partially filled containers can experience a wide spectrum of motions such as planar, non-planar, rotational, quasi-periodic, chaotic, and disintegration. Civil engineers and seismologists have been studying liquid sloshing effects on large dams, oil tanks and elevated water towers under ground motion. Since the early 1960’s, the problem of liquid sloshing dynamics has been of major concern to aerospace engineers studying the influence of liquid propellant sloshing on the flight performance of jet vehicles. Since then, new areas of research activities have emerged. The modern theory of nonlinear dynamics has indeed promoted further studies and uncovered complex nonlinear phenomena. These include rotary sloshing, Faraday waves, nonlinear liquid sloshing interaction with elastic structures, internal resonance effects, stochastic sloshing dynamics, hydrodynamic sloshing impact dynamics, g-jitter under microgravity field, cross-waves, and spatial resonance. The dynamic stability of liquid gas tankers and ship cargo tankers, and liquid hydrodynamic impact loading are problems of current interest to the designers of such systems. This article will address the means of passive control of liquid sloshing and the use of liquid sloshing forces to control vibratory structures. Other important contributions include the development of digital computer codes to solve complex problems that were difficult to handle in the past. The purpose of this article is to review the research work developed in different applications. It will highlight the major achievements and results reported in the literature. Some early work will be cited very briefly in order to provide an updated bibliography of liquid sloshing dynamics. This review article contains 1,319 references.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 323 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3