Transient Thermal Bubble Formation on Polysilicon Micro-Resisters

Author:

Tsai Jr-Hung1,Lin Liwei2

Affiliation:

1. Mechanical Engineering Department, University of Michigan, Ann Arbor, MI

2. Mechanical Engineering Department, University of California at Berkeley, Mechanical Engineering, 1113 Etcheverry Hall, University of California, Berkeley, CA 94720-1740

Abstract

Transient bubble formation experiments are investigated on polysilicon micro-resisters having dimensions of 95 μm in length, 10 μm or 5 μm in width, and 0.5 μm in thickness. Micro resisters act as both resistive heating sources and temperature transducers simultaneously to measure the transient temperature responses beneath the thermal bubbles. The micro bubble nucleation processes can be classified into three groups depending on the levels of the input current. When the input current level is low, no bubble is nucleated. In the middle range of the input current, a single spherical bubble is nucleated with a waiting period up to 2 sec while the wall temperature can drop up to 8°C depending on the magnitude of the input current. After the formation of a thermal bubble, the resister temperature rises and reaches a steady state eventually. The bubble growth rate is found proportional to the square root of time that is similar to the heat diffusion controlled model as proposed in the macro scale boiling experiments. In the group of high input current, a single bubble is nucleated immediately after the current is applied. A first-order model is proposed to characterize the transient bubble nucleation behavior in the micro-scale and compared with experimental measurements.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3