Application of an Exhaust Geometry Based Delay Prediction Model to Internal Combustion Engines

Author:

Meyer Jason1,Rajagopalan Sai S. V.1,Midlam-Mohler Shawn1,Yurkovich Stephen1,Guezennec Yann1

Affiliation:

1. Ohio State University, Columbus, OH

Abstract

All vehicle manufacturers implement an air-to-fuel ratio (AFR) control system for emissions reduction in gasoline engines. When using a model based control structure, it is vital to capture the underlying dynamics of the plant as accurately as possible, thus facilitating a robust control design that meets the emissions regulation requirements. One of the leading sources of uncertainty in the engine model is the variable plant delay. Although the delay could be modeled using a look-up table of steady-state delay values, during transients when AFR control is most important the steady-state delay poorly approximates the true delay. An exhaust geometry based delay model was developed previously within the framework of a model based control design for AFR control of stoichiometric engines. In this paper, it is shown that using this model the delay can be predicted with a significantly higher accuracy especially during transients, thus improving emissions performance. Because the plant delay plays a destabilizing role in feedback control, the utility of such a model is also to minimize phase errors between the predicted and measured equivalence ratio (EQR) in a reference tracking control setting.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3