Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet

Author:

Tyagi Mayank1,Acharya Sumanta1

Affiliation:

1. Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803

Abstract

Predictions of turbine blade film cooling have traditionally employed Reynolds-averaged Navier-Stokes solvers and two-equation models for turbulence. Evaluation of several versions of such models have revealed that the existing two-equation models fail to resolve the anisotropy and the dynamics of the highly complex flow field created by the jet-crossflow interaction. A more accurate prediction of the flow field can be obtained from large eddy simulations (LES) where the dynamics of the larger scales in the flow are directly resolved. In the present paper, such an approach has been used, and results are presented for a row of inclined cylindrical holes at blowing ratios of 0.5 and 1 and Reynolds numbers of 11,100 and 22,200, respectively, based on the jet velocity and hole diameter. Comparison of the time-averaged LES predictions with the flow measurements of Lavrich and Chiappetta (UTRC Report No. 90-04) shows that LES is able to predict the flow field with reasonable accuracy. The unsteady three-dimensional flow field is shown to be dominated by packets of hairpin-shaped vortices. The dynamics of the hairpin vortices in the wake region of the injected jet and their influence on the unsteady wall heat transfer are presented. Generation of “hot spots” and their migration on the film-cooled surface are associated with the entrainment induced by the hairpin structures. Several geometric properties of a “mixing interface” around hairpin coherent structures are presented to illustrate and quantify their impact on the entrainment rates and mixing processes in the wake region.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3