Affiliation:
1. NASA Lewis Research Center, Cleveland, OH
Abstract
A three-dimensional Navier-Stokes analysis tool has been developed In order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine airfoils. An existing code (Amone et al., 1991) has been modified for the purpose. The code is an explicit, multigrid, ceil-centered, finite volume code with an algebraic turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit residual smoothing are used with a full-multigrid technique. Moreover, Mayle’s transition criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the airfoil surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison with mid-span experimental data for four and nine rows of cooling holes is fair. The computations, however, show a strong spanwise variation of the heat transfer coefficient on the airfoil surface, specially when the shower-head cooling holes are on.
Publisher
American Society of Mechanical Engineers
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献