Evaporative Heat Transfer and Pressure Drop Performance of Internally-Finned Tubes with Refrigerant 22

Author:

Kubanek G. R.1,Miletti D. L.2

Affiliation:

1. Process Engineering Division, Noranda Research Centre, Pointe Claire, Quebec, Canada H9R 1G5

2. Department of Process Technology, Noranda Research Centre, Pointe Claire, Quebec, Canada H9R 1G5

Abstract

Heat transfer and pressure drop measurements were performed on three integral spiralled inner-fin tubes (12.7–15.9 mm OD, 30–32 fins, fin height 0.5–0.6 mm) with two-phase flow of refrigerant 22 under evaporating conditions. The data were compared with the performance of smooth tubes with and without a star-shaped insert. Based on the same length of heated test section (0.80 and 2.44 m), change in refrigerant quality (0.2 and 0.7) and mass velocity range (65,000 to 270,000 g/s · m2): (1) The enhancements in heat transfer coefficient for the internally-finned tubes over those for the smooth tubes ranged from 30 to 760 percent, and typically increased with mass velocity. Tighter fin spiralling significantly increased heat transfer. (2) The enhancements in heat transfer coefficient for the smooth tube with the star-shaped insert ranged from 40 to 370 percent, but decreased with mass velocity. (3) The increases in pressure drop for the internally-finned tubes over those for the smooth tubes ranged from 10 to 290 percent, while those for the smooth tube with the star-shaped insert were 300 to over 2000 percent. The factors enhancing the performance of the internally-finned tubes include the low fins which result in only a small reduction in cross-sectional flow area, and the tight spiral which increases the corner length per unit length of tube available for nucleation of vapor bubbles.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3