Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow

Author:

Morbiducci Umberto1,Gallo Diego1,Massai Diana1,Consolo Filippo1,Ponzini Raffaele2,Antiga Luca3,Bignardi Cristina1,Deriu Marco A.1,Redaelli Alberto4

Affiliation:

1. Department of Mechanics, Politecnico di Torino, Turin 10129, Italy

2. CILEA Interuniversity Consortium, Milan 20090, Italy

3. Mario Negri Institute, Bergamo 24125, Italy

4. Department of Bioengineering, Politecnico di Milano, Milan 20133, Italy

Abstract

Computational fluid dynamics (CFD) models have become very effective tools for predicting the flow field within the carotid bifurcation, and for understanding the relationship between local hemodynamics, and the initiation and progression of vascular wall pathologies. As prescribing proper boundary conditions can affect the solutions of the equations governing blood flow, in this study, we investigated the influence to assumptions regarding the outflow boundary conditions in an image-based CFD model of human carotid bifurcation. Four simulations were conducted with identical geometry, inlet flow rate, and fluid parameters. In the first case, a physiological time-varying flow rate partition at branches along the cardiac cycle was obtained by coupling the 3D model of the carotid bifurcation at outlets with a lumped-parameter model of the downstream vascular network. Results from the coupled model were compared with those obtained by imposing three fixed flow rate divisions (50/50, 60/40, and 70/30) between the two branches of the isolated 3D model of the carotid bifurcation. Three hemodynamic wall parameters were considered as indicators of vascular wall dysfunction. Our findings underscore that the overall effect of the assumptions done in order to simulate blood flow within the carotid bifurcation is mainly in the hot-spot modulation of the hemodynamic descriptors of atherosusceptible areas, rather than in their distribution. In particular, the more physiological, time-varying flow rate division deriving from the coupled simulation has the effect of damping wall shear stress (WSS) oscillations (differences among the coupled and the three fixed flow partition models are up to 37.3% for the oscillating shear index). In conclusion, we recommend to adopt more realistic constraints, for example, by coupling models at different scales, as in this study, when the objective is the outcome prediction of alternate therapeutic interventions for individual patients, or to test hypotheses related to the role of local fluid dynamics and other biomechanical factors in vascular diseases.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3