An Inverse Inviscid Method for the Design of Quasi-Three-Dimensional Turbomachinery Cascades

Author:

Bonataki E.1,Chaviaropoulos P.1,Papailiou K. D.1

Affiliation:

1. National Technical University of Athens, Laboratory of Thermal Turbomachines, 15710 Athens, Greece

Abstract

The calculation of the blade shape, when the desired velocity distribution is imposed, has been the object of numerous investigations in the past. The object of this paper is to present a new method suitable for the design of turbomachinery stator and rotor blade sections, lying on an arbitrary axisymmetric stream-surface with varying streamtube width. The flow is considered irrotational in the absolute frame of reference and compressible. The given data are the streamtube geometry, the number of blades, the inlet flow conditions and the suction and pressure side velocity distributions as functions of the normalized arc-length. The output of the computation is the blade shape that satisfies the above data. The method solves an elliptic type partial differential equation for the velocity modulus with Dirichlet and periodic type boundary conditions on the (potential function, stream function)-plane (Φ, Ψ). The flow angle field is subsequently calculated solving an ordinary differential equation along the iso-Φ or iso-Ψ lines. The blade coordinates are, finally, computed by numerical integration. A set of closure conditions has been developed and discussed in the paper. The method is validated on several test cases and a discussion is held concerning its application and limitations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on aerodynamic optimization of turbomachinery using adjoint method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-23

2. Optimization of internal flow passages using inverse methods;2nd AIAA, Theoretical Fluid Mechanics Meeting;1998-06-15

3. Parametric investigation of idealized hypersonic cruise configurations;21st Atmospheric Flight Mechanics Conference;1996-07-29

4. Arbitrary Blade Section Design Based on Viscous Considerations. Blade Optimization;Journal of Fluids Engineering;1996-06-01

5. Arbitrary Blade Section Design Based on Viscous Considerations. Background Information;Journal of Fluids Engineering;1996-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3