Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays

Author:

Chyu Minking K.1,Siw Sean C.1,Moon Hee Koo2

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

2. Solar Turbines Inc., San Diego, CA

Abstract

A pin-fin array is a compact heat exchanger and widely used for cooling of turbine airfoils. This study is to experimentally examine the effects of pin height or height-to-diameter ratio (H/D) on the heat transfer from a pin-fin array. The test models are designed to facilitate three different H/D ratios, from 2 to 4, with a staggered pin-fin array of inter-pin spacing 2.5 times the pin diameter (S/D = X/D = 2.5) in both longitudinal and transverse directions. The Reynolds number ranges from 10,000 to 30,000. The experiment uses a hybrid technique based on the transient liquid-crystal imaging to obtain detailed local heat transfer coefficients over both the pin-fin surface and endwalls. Overall array-averaged heat transfer increases with the H/D value or pin height. Most of the heat transfer contribution for H/D>2 comes from the pins rather than the endwall. However, higher H/D leads to a greater pressure loss. As a measure of heat transfer enhancement per pressure loss, H/D = 2 leads to the highest performance index and H/D = 4 is the lowest.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3