A Review of Machine Learning Methods in Turbine Cooling Optimization

Author:

Xu Liang1,Jin Shenglong1,Ye Weiqi1,Li Yunlong1,Gao Jianmin1

Affiliation:

1. State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

In the current design work, turbine performance requirements are getting higher and higher, and turbine blade design needs multiple rounds of iterative optimization. Three-dimensional turbine optimization involves multiple parameters, and 3D simulation takes a long time. Machine learning methods can make full use of historically accumulated data to train high-precision data models, which can greatly reduce turbine blade performance evaluation time and improve optimization efficiency. Based on the data model, the advanced intelligent combinatorial optimization technology can effectively reduce the number of iterations, find the better model faster, and improve the optimization calculation efficiency. Based on the different cooling parts of turbine blades and machine learning, this research explores the potential of implementing different machine learning algorithms in the field of turbine cooling design.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference127 articles.

1. Xu, L., Sun, Z., Ruan, Q., Xi, L., Gao, J., and Li, Y. (2023). Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies, 16.

2. Research Progress on Cooling Structure of Aeroengine Air-Cooled Turbine Blade;Kong;J. Propuls. Technol.,2022

3. Application Progress of Machine Learning in Turbomachinery;Liu;J. Eng. Thermophys.,2023

4. A Review of Deep Learning Methods in Turbine Cooling;Wang;J. Eng. Thermophys.,2022

5. Optimization of cooling structures in gas turbines: A review;Zhang;Chin. J. Aeronaut.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3