Application of Conjugate Heat Transfer for Cooling Optimization of a Turbine Airfoil

Author:

Nowak Grzegorz1,Wro´blewski Włodzimierz1

Affiliation:

1. Silesian University of Technology, Gliwice, Poland

Abstract

This paper discusses the problem of airfoil cooling system optimization connected with Conjugate Heat Transfer (CHT) analysis for reliable thermal field prediction within a cooled component. Since the full CHT solution, which involves the main flow, blade material and the coolant flow domains is computationally expensive from the point of view of optimization process, it was decided to reduce the problem by fixing the boundary conditions at the blade surface and solving the task for the interior only (both solid material and coolant). Such assumption, on one hand, makes the problem computationally feasible, and on the other, provides more reliable thermal field prediction than it used to be with the empirical relationships. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially, cooling is provided with circular passages and heat is transported by convection. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. In the present study the airfoil profile is taken as aerodynamically optimal. The optimization is done with an evolutionary algorithm within a 30 dimensional design space, composed of space coordinates and radii of cooling channels. The search is realized with a weighted single objective function, which consisted of three objectives formulated on the basis of the airfoil’s thermal field and coolant mass flow.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3