Conjugate Heat Transfer Analysis and Design Optimization of Internally Cooling Turbine Blade

Author:

Qu Mao Hua1,Sun Su Ya1,Xi Ping1

Affiliation:

1. Beihang University

Abstract

To improve the cooling efficiency of turbine blade, a multidisciplinary design optimization (MDO) system involving aerodynamics, heat transfer and structures has been developed. In this system, a MDO procedure for a turbine blade with complicate internal structure is performed. The structural size of rib turbulators, partitions and trailing edge cooling slots, which serve as design variables, is used for parametric modeling of three dimensional turbine blade. Conjugate heat transfer analysis is employed to get the temperature of the blade. The temperature in the blade body obtained from former coupled analysis is specified as boundary conditions for structural analysis. Meanwhile, a combined algorithm of multi-island genetic algorithm (MIGA) and sequential quadratic programming (SQP) is applied for optimization in specified space. While the flow rate of cooling air remains unchanged, the maximum and average temperatures of the blade decrease under the condition of meeting the strength requirement. The result shows that the cooling efficiency of turbine blade is improved, and the system exhibits higher stability, feasibility and efficiency for engineering applications.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3