Machine Learning Models for Acoustic Data Prediction During Drilling Composite Lithology Formations

Author:

Suleymanov Vagif1,Gamal Hany2,Elkatatny Salaheldin2,Glatz Guenther2,Abdulraheem Abdulazeez2

Affiliation:

1. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, P. O. Box: 5049 Dhahran 31261, Saudi Arabia

Abstract

Abstract The rock acoustic data that provide important information about the formation petrophysics and geomechanics are highly needed to design the wells drilling programs, in addition to, reservoir stimulation and field development plans. The acoustic data acquisition through the conventional methods in the petroleum industry either by logging or lab measurements has many drawbacks as the cost of well log operations and the job time. Determining the acoustic data through the common correlations did not provide high accuracy, and there are limitations for using these correlations. The new trend in the petroleum industry with the fourth industrial revolution is to employ machine learning for such problems to provide effective solutions. Therefore, this study utilized the machine learning for developing prediction models for acoustic compressional and shear slowness using adaptive neuro-fuzzy inference system and support vector machines tools. The study presents novel contributions for predicting acoustic slowness from only the surface drilling data while drilling different formations of composite lithology (limestone, sandstone, shale, and carbonate). The study utilized real field data (2800 data points) to build and test the two models through deep sensitivity analysis, in addition, further testing for the models by another 2800 data points from the same field for the validation phase. The obtained results ensured the capability of machine learning for predicting the acoustic slowness with high accuracy as adaptive neuro-fuzzy inference system (ANFIS) achieved a correlation coefficient (R) higher than 0.98 and error less than 1.43% as average absolute percentage error (AAPE) between the actual and predicted acoustic values. Adaptive neuro-fuzzy inference model showed the highest accuracy during the model training as R was 1.0; in addition, R for testing results showed 0.98, and AAPE ranged from 0.25% to 0.92%. The validation phase ensured the high performance for the acoustic prediction of the developed models as R is higher than 0.98 and AAPE lower than 1.46%. The machine learning applications through the developed models for the acoustic data will provide cost and time savings for acoustic data acquisition for the field applications.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference51 articles.

1. Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment;Moos;J. Pet. Sci. Eng.,2003

2. Basic well log analysis

3. Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks;Chang;J. Pet. Sci. Eng.,2006

4. Overpressure Prediction Using the Hydro-Rotary Specific Energy Concept;Oloruntobi;J. Pet. Sci. Eng.,2018

5. Neutron-Gamma Density (Ngd): Principles, Field Test Results And Log Quality Control Of A Radioisotope-Free Bulk Density Measurement;Reichel,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3