Rock physics and machine learning comparison: elastic properties prediction and scale dependency

Author:

Suleymanov Vagif,El-Husseiny Ammar,Glatz Guenther,Dvorkin Jack

Abstract

Rock physics diagnostics (RPD) established based upon the well data are used to deterministically predict elastic properties of rocks from measured petrophysical rock parameters. However, with the recent advances in statistical methods, machine learning (ML) can help to build a shortcut between raw well data and rock properties of interest. Several studies have reported the comparison of rock physics and machine learning methods for the prediction of rock properties, but the scale dependence of the ML models was never investigated. This study aims at comparing the results from rock physics and machine learning models for predicting elastic properties such as bulk density (ρb), P-wave velocity (Vp), S-wave velocity (Vs), as well as Poisson’s ratio (v) and acoustic impedance (Ip) in a well from the Gulf of Mexico (GOM) in two different scale scenarios: the well log and seismic scales. The well data under examination was split into training and testing subsets to optimize and test the developed ML models. The RPD approach was also used to validate and compare the accuracy of predicted elastic properties. Backus averaging was later applied to upscale the well data to the seismic scale to examine the scale dependence and prediction accuracy of aforementioned physics-driven and data-driven approaches. Results show that RPD and ML methods provided consistent results at both well log and seismic scales, suggesting the scale independence of both approaches. Moreover, ML models showed better estimation of rock properties due to their “apparent” match with measured data at both scales compared to the RPD approach where a significant mismatch between measured and predicted rock properties was found in the reservoir section of the well. However, by conducting further quality control of the sonic data, it was found that the measured Poisson’s ratio was extremely high in the gas-saturated interval. Hence, the prediction from ML models in this particular case cannot be trusted as ML models were trained based on poor-quality well data with non-realistic Vs and v values. Such an issue, however, could be identified and corrected using RPD as presented in this study. We demonstrate the importance of incorporating domain knowledge, i.e., rock physics, to check data quality and validate results from data-driven models.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3