A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media

Author:

Ehlers Wolfgang1,Markert Bernd1

Affiliation:

1. Institute of Applied Mechanics (Civil Engineering), University of Stuttgart, Stuttgart, Germany

Abstract

Based on the Theory of Porous Media (mixture theories extended by the concept of volume fractions), a model describing the mechanical behavior of hydrated soft tissues such as articular cartilage is presented. As usual, the tissue will be modeled as a materially incompressible binary medium of one linear viscoelastic porous solid skeleton saturated by a single viscous pore-fluid. The contribution of this paper is to combine a descriptive representation of the linear viscoelasticity law for the organic solid matrix with an efficient numerical treatment of the strongly coupled solid-fluid problem. Furthermore, deformation-dependent permeability effects are considered. Within the finite element method (FEM), the weak forms of the governing model equations are set up in a system of differential algebraic equations (DAE) in time. Thus, appropriate embedded error-controlled time integration methods can be applied that allow for a reliable and efficient numerical treatment of complex initial boundary-value problems. The applicability and the efficiency of the presented model are demonstrated within canonical, numerical examples, which reveal the influence of the intrinsic dissipation on the general behavior of hydrated soft tissues, exemplarily on articular cartilage.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference41 articles.

1. Bowen, R. M., 1976, “Theory of Mixtures,” in: Continuum Physics, Vol. III, Eringen, A. C., ed., Academic Press, New York, pp. 1–127.

2. Bowen, R. M. , 1980, “Incompressible Porous Media Models by Use of the Theory of Mixtures,” Int. J. Eng. Sci., 18, pp. 1129–1148.

3. de Boer, R., and Ehlers, W., 1986, “Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme,” Forschungsberichte aus dem Fachbereich Bauwesen, Vol. 40, Universita¨t Essen, Essen.

4. Ehlers, W., 1989, “Poro¨se Medien—ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie,” Forschungsberichte aus dem Fachbereich Bauwesen, Vol. 47, Universita¨t Essen, Essen.

5. Ehlers, W., 1993, “Constitutive Equations for Granular Materials in Geomechanical Context,” in: Continuum Mechanics in Environmental Sciences, CISM Courses and Lectures, Vol. 337, Hutter, K., ed., Springer-Verlag, Wien, pp. 313–402.

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3