Study of Fluorine-Doped TiO2 Sol-Gel Thin Coatings

Author:

Giannakopoulou T.1,Todorova N.1,Vaimakis T.2,Ladas S.3,Trapalis C.4

Affiliation:

1. NCSR Demokritos, Institute of Materials Science, 153 10, Attica, Greece

2. Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece

3. Department of Chemical Engineering and FORTH-ICE∕HT, University of Patras, 265 04, Rion, Greece

4. NCSR Demokritos, Institute of Materials Science, 153 10, Attica, Greece; Department of Product and Systems Design Engineering, University of Aegean, 841 00 Syros, Greece

Abstract

Ti O 2 is an excellent material for degradation of many environmental contaminants. Its photocatalytic activity is restricted by UV spectral region that can be extended to visible region using different doping techniques. Effect of fluorine-doping on the optical properties of sol-gel prepared TiO2 thin films is reported. Trifluoroacetic acid (CF3COOH) was used as fluorine source with starting concentrations of 5at.%, 10at.%, and 20at.% F to Ti. Gel films were deposited on SiO2∕soda lime glass substrates by dip-coating technique. After thermal treatment at 450°C fluorine containing TiO2 thin films were obtained. The crystallinity of the films was determined by X-ray diffraction (XRD). The X-ray photoemission spectrometry (XPS) was applied to determine valence state of the dopant and bonding element. The optical constants, namely, refractive index and the extinction coefficient, were obtained by fitting UV-visible theoretical transmittance curves to experimental ones. The simulated transmittance was calculated in the frames of the Forouhi–Bloomer (FB) dispersion model. The values of the FB energy band gap determined as onset of the absorption were compared with Tauc band gap values received by extrapolation of the linear part of the absorption edge. The XRD patterns reflect beginning of the anatase crystallization process. The XPS analysis reveals the presence of fluorine in the films in the form of titanium fluoride, titanium oxyfluorides, and nonstoichiometric TiO2−xFx. The linear part of the absorption edge of TiO2 films for mentioned fluorine concentrations gives slightly increased values of Tauc band gap (∼3.7eV) than that for bulk TiO2(∼3.2eV). Also, its broadening at lower frequencies with a FB band gap ∼2.7eV is observed. The results show that, although the fluorine is incorporated in the TiO2 lattice, it does not affect the crystallinity and band gap of the formed TiO2 film for the F∕Ti ratios used in the starting sols.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3