Anti-Reflective Coating Materials: A Holistic Review from PV Perspective

Author:

Shanmugam NatarajanORCID,Pugazhendhi Rishi,Madurai Elavarasan RajvikramORCID,Kasiviswanathan PitchandiORCID,Das Narottam

Abstract

The solar photovoltaic (PV) cell is a prominent energy harvesting device that reduces the strain in the conventional energy generation approach and endorses the prospectiveness of renewable energy. Thus, the exploration in this ever-green field is worth the effort. From the power conversion efficiency standpoint of view, PVs are consistently improving, and when analyzing the potential areas that can be advanced, more and more exciting challenges are encountered. One such crucial challenge is to increase the photon availability for PV conversion. This challenge is solved using two ways. First, by suppressing the reflection at the interface of the solar cell, and the other way is to enhance the optical pathlength inside the cell for adequate absorption of the photons. Our review addresses this challenge by emphasizing the various strategies that aid in trapping the light in the solar cells. These strategies include the usage of antireflection coatings (ARCs) and light-trapping structures. The primary focus of this study is to review the ARCs from a PV application perspective based on various materials, and it highlights the development of ARCs from more than the past three decades covering the structure, fabrication techniques, optical performance, features, and research potential of ARCs reported. More importantly, various ARCs researched with different classes of PV cells, and their impact on its efficiency is given a special attention. To enhance the optical pathlength, and thus the absorption in solar PV devices, an insight about the advanced light-trapping techniques that deals with the concept of plasmonics, spectral modification, and other prevailing innovative light-trapping structures approaching the Yablonovitch limit is discussed. An extensive collection of information is presented as tables under each core review section. Further, we take a step forward to brief the effects of ageing on ARCs and their influence on the device performance. Finally, we summarize the review of ARCs on the basis of structures, materials, optical performance, multifunctionality, stability, and cost-effectiveness along with a master table comparing the selected high-performance ARCs with perfect AR coatings. Also, from the discussed significant challenges faced by ARCs and future outlook; this work directs the researchers to identify the area of expertise where further research analysis is needed in near future.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3