A New Molecular Insight in Effects of Alcohol Co-Solvents on Miscibility of Anhydrous Ethanol/Diesel Blends

Author:

Li Xueying1,Hou Lei1,Chai Chong2,He Sichen1,Huang Yanan3

Affiliation:

1. China University of Petroleum MOE Key Laboratory of Petroleum Engineering, The College of Mechanical and Transportation Engineering, , Beijing 102249 , China

2. National Pipe Network Group Science and Technology Research Institute , New Energy Storage and Transportation Research Department, Langfang, Hebei 065000 , China

3. China Merchants Bank Beijing Branch , Retailing Business Department, Chaoyang District, Beijing 100024 , China

Abstract

Abstract Sustainable policy leads to partially replace fossil diesel by bio-fuels and ethanol/diesel blends. The major challenge is how to enhance miscibility of ethanol with diesel. Molecular dynamics simulation was applied to study the effects of alcohol co-solvents on miscibility of ethanol with diesel. The 1-heptanol, 1-decanol, n-butanol, and butanol isomers were selected as co-solvents. The diesel model was constructed to quantitatively characterize miscibility and obtain interaction of ethanol and diesel. The solubility parameters, structural feature, and energy properties were analyzed. The results showed that long-chain alcohol co-solvents contributed to miscibility of blends. The aromatics had more effects on miscibility than linear alkanes and cycloalkanes. Radial distribution function results showed that straight-chain alcohols or high linearity co-solvents promoted miscibility of ethanol than branched alcohols. The energy analysis revealed that the hydrogen bonding and van der Waals interaction were the main driving forces to improve miscibility, while polarization interaction had no major contribution. The hydrogen bonding dominated for short-chain alcohols, while van der Waals interaction was vital for long-chain alcohols. The coordination of hydrogen bonding and van der Waals energy in dynamic equilibrium led to the optimal miscibility.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3