Statistical Modal Analysis for Out-of-Plane Deviation Prediction in Additive Manufacturing Based on Finite Element Simulation

Author:

Zhu Zuowei1,Anwer Nabil1,Mathieu Luc1

Affiliation:

1. LURPA, ENS Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, 94235 Cachan, France

Abstract

Abstract Despite the rapid growth and widespread recognition of additive manufacturing (AM) technologies, the geometrical inaccuracy of the manufactured products remains a challenging issue and effective prediction of the geometric deviations in AM is critical for the solution of this issue. The layerwise characteristic of the AM process has motivated the investigation of deviation from in-plane and out-of-plane perspectives, the latter has been seldom studied and will be the focus of this paper. In this paper, an out-of-plane deviation modeling method will be proposed based on statistical modal analysis. Owing to the inconvenience in data acquisition, AM simulation is conducted to obtain the layer-level out-of-plane deviation on parts manufactured by the selective laser melting process. Discrete cosine transform is adopted to identify the major deviation modes from the data. The statistical relationship between mode coefficients and related part and process parameters is studied based on the Gaussian process model. To gain data for model training, experimental design is conducted to sample parameter combinations as simulation input. A case study is presented to demonstrate the proposed method and the effectiveness is validated on test data. The method can be applied in multiple domains of AM, such as quality control and tolerancing, to provide high-fidelity prediction of geometric deviations.

Funder

China Scholarship Council

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3