The Effects of Vibrations on Particle Motion in a Viscous Fluid Cell

Author:

Hassan Samer1,Kawaji Masahiro1

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada

Abstract

Abstract The effects of small vibrations on particle motion in a viscous fluid cell have been investigated experimentally and theoretically. A steel particle was suspended by a thin wire at the center of a fluid cell, and the cell was vibrated horizontally using an electromagnetic actuator and an air bearing stage. The vibration-induced particle amplitude measurements were performed for different fluid viscosities (58.0cP and 945cP), and cell vibration amplitudes and frequencies. A viscous fluid model was also developed to predict the vibration-induced particle motion. This model shows the effect of fluid viscosity compared to the inviscid model, which was presented earlier by Hassan et al. (2004, “The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell,” ASME J. Appl. Mech., 73(1), pp. 72–78) and validated using data obtained for water. The viscous model with modified drag coefficients is shown to predict well the particle amplitude data for the fluid viscosities of 58.5cP and 945cP. While there is a resonance frequency corresponding to the particle peak amplitude for oil (58.0cP), this phenomenon disappeared for glycerol (945cP). This disappearance of resonance phenomenon is explained by referring to the theory of mechanical vibrations of a mass-spring-damper system. For the sinusoidal particle motion in a viscous fluid, the effective drag force has been obtained, which includes the virtual mass force, drag force proportional to the velocity, and the Basset or history force terms.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Experimental Investigation of Marangoni Convection and Vibration-Induced Crystal Motion During Protein Crystal Growth;Gamache;Microgravity Sci. Technol.

2. Sur la Resistance qu’oppose un Liquide Indefeni au Repos, sans Pesanteur, au Mouvememt d’une Sphere Solide qu’il Mouille sur toute sa Surface;Boussinesq;Acad. Sci., Paris, C. R.

3. Uber die Stokes’sche Formel und Uber eine verwandte Aufgabe in der Hydrodynamik;Oseen;Ark. Mat., Astron. Fys.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3