Mechanism of Cloud Droplet Motion under Sound Wave Actions

Author:

Li Fang-Fang1,Jia Ying-Hui1,Wang Guang-Qian2,Qiu Jun2

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, and State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China

Abstract

AbstractSound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Funder

Key Programme

Major Research Plan

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference32 articles.

1. Terminal velocities of spherical particles in a vertically oscillating liquid;Baird;Chem. Eng. Sci.,1967

2. Audio frequency pressure variations from lightning discharges;Bhartendu,1969

3. Sound pressure of thunder;Bhartendu,1971

4. Motion of gas bubbles and rigid particles in vibrating fluid-filled volumes;Blekhman,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3