Nonaxisymmetric Stator Design for Boundary Layer Ingesting Fans

Author:

Gunn Ewan J.1,Hall Cesare A.2

Affiliation:

1. Mem. ASME Turbostream Ltd, 3 Charles Babbage Road, Cambridge CB3 0GT, UK e-mail:

2. Mem. ASME Whittle Laboratory, University of Cambridge, 1 JJ Thomson Avenue, Cambridge CB3 0DY, UK e-mail:

Abstract

In a boundary layer ingesting (BLI) fan system, the inlet flow field is highly nonuniform. In this environment, an axisymmetric stator design suffers from a nonuniform distribution of hub separations, increased wake thicknesses, and casing losses. These additional loss sources can be reduced using a nonaxisymmetric design that is tuned to the radial and circumferential flow variations at exit from the rotor. In this paper, a nonaxisymmetric design approach is described for the stator of a low-speed BLI fan. First, sectional design changes are applied at each radial and circumferential location. Next, this approach is combined with the application of nonaxisymmetric lean. The designs were tested computationally using full-annulus unsteady computational fluid dynamics (CFD) of the complete fan stage with a representative inlet distortion. The final design has also been manufactured and tested experimentally. The results show that a 2D sectional approach can be applied nonaxisymmetrically to reduce incidence and diffusion factor at each location. This leads to reduced loss, particularly at the casing and midspan, but it does not eliminate the hub separations that are present within highly distorted regions of the annulus. These are relieved by nonaxisymmetric lean where the pressure surface is inclined toward the hub. For the final design, the loss in the stator blades operating with BLI was measured to be 10% lower than that for the original stator design operating with undistorted inflow. Overall, the results demonstrate that the nonaxisymmetric design has the potential to eliminate any additional loss in a BLI fan stator caused by the nonuniform ingested flow field.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wake Dynamics of Complex Turning Vanes Using Time-Resolved Particle Image Velocimetry Measurements;Journal of Fluids Engineering;2024-08-29

2. Design Optimization of a Novel Flush Boundary Layer Diverter;Journal of Turbomachinery;2024-07-15

3. Attenuation of Inlet Distortion Effects on Fans Using Asymmetric Inlet Guide Vanes;Journal of Turbomachinery;2024-05-08

4. A Robust Control Technique for Pitch Control of an Aeropendulum;2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE);2023-11-03

5. A data-driven flow loss prediction model for the blade hub region of a boundary layer ingestion fan rotor;International Journal of Numerical Methods for Heat & Fluid Flow;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3