Enhanced External Aerodynamic Performance of a Generic Combustor Using An Integrated OGV/Prediffuser Design Technique

Author:

Duncan Walker A.1,Carrotte Jon F.1,McGuirk James J.1

Affiliation:

1. Dept. of Aero. and Auto. Engineering, Loughborough University Loughborough, LE11 3TU, United Kingdom

Abstract

In this paper we use experimental measurements to characterize the extent that improved the external aerodynamic performance (reduced total pressure loss, increased flow quality) of a gas-turbine combustion system may be achieved by adopting an integrated OGV/prediffuser technique. Two OGV/prediffuser combinations were tested. The first is a datum design corresponding to a conventional design approach, where the OGV and prediffuser are essentially designed in isolation. The second is an “integrated” design where the OGV blade shape has been modified, following recommendations of earlier CFD work (Final Report No. TT03R01, 2003), to produce a secondary flow/wake structure that allows the prediffuser to operate at a higher area ratio without boundary layer separation. This is demonstrated to increase static pressure recovery and reduce dump losses. Experimental measurements are presented on a fully annular rig. Several traverse planes are used to gather five-hole probe data that allow the flow structure through the OGV, at the inlet and exit of the prediffuser, and in the inner/outer annulus supply ducts to be examined. Both overall performance measures (loss coefficients) and measures of flow uniformity and quality are used to demonstrate that the integrated design is superior.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Purge Flow Swirl at Exit to the High-Pressure Compressor on OGV/Pre-Diffuser and Combustion System Aerodynamics;Journal of Turbomachinery;2019-06-14

2. Uncertainty Quantification in CFD: The Matrix of Knowledge;Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines;2018-06-22

3. The aerodynamic challenges of aeroengine gas-turbine combustion systems;The Aeronautical Journal;2014-06

4. Integrated Outlet Guide Vane Design for an Aggressive S-Shaped Compressor Transition Duct;Journal of Turbomachinery;2012-10-31

5. The Impact of Compressor Exit Conditions on Fuel Injector Flows;Journal of Engineering for Gas Turbines and Power;2012-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3