Integrated Outlet Guide Vane Design for an Aggressive S-Shaped Compressor Transition Duct

Author:

Walker A. D.1,Barker A. G.,Carrotte J. F.2,Bolger J. J.,Green M. J.3

Affiliation:

1. e-mail:

2. Department of Aeronautical and Automotive Engineering, Loughborough University, LE11 3TU, UK

3. Rolls-Royce PLC, Derby, DE24 8BJ, UK

Abstract

Within gas turbines the ability to design shorter aggressive S-shaped ducts is advantageous from a performance and weight saving perspective. However, current design philosophies tend to treat the S-shaped duct as an isolated component, neglecting the potential advantages of integrating the design with the upstream or downstream components. In this paper, such a design concept is numerically developed in which the upstream compressor outlet guide vanes are incorporated into the first bend of the S-shaped duct. Positioning the vane row within the first bend imparts a strong radial gradient to the pressure field within the vane passage. Tangential lean and axial sweep are employed such that the vane geometry is modified to exactly match the resulting inclined static pressure field. The integrated design is experimentally assessed and compared to a conventional nonintegrated design on a fully annular low speed test facility incorporating a single stage axial compressor. Several traverse planes are used to gather five-hole probe data which allow the flow structure to be examined through the rotor, outlet guide vane and within the transition ducts. The two designs employ almost identical duct geometry, but integration of the vane row reduces the system length by 21%. Due to successful matching of the static pressure field, the upstream influence of the integrated vane row is minimal and the rotor performance is unchanged. Similarly, the flow development within both S-shaped ducts is similar such that the circumferentially averaged profiles at duct exit are almost identical, and the operation of a downstream component would be unaffected. Overall system loss remains nominally unchanged despite the inclusion of lean and sweep and a reduction in system length. Finally, the numerical design predictions show good agreement with the experimental data thereby successfully validating the design process.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3