Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part II—Description of Analysis Technique and Typical Time-Resolved Measurements

Author:

Dunn M. G.1,George W. K.1,Rae W. J.1,Woodward S. H.1,Moller J. C.1,Seymour P. J.1

Affiliation:

1. Calspan–UB Research Center, Buffalo, NY 14225

Abstract

This paper presents a detailed description of an analysis technique and an application of this technique to obtain time-resolved heat flux for the blade of a Garrett TFE 731-2 hp full-stage rotating turbine. A shock tube is used as a short-duration source of heated air and platinum thin-film gages are used to obtain the heat-flux measurements. To obtain the heat-flux values from the thin-film gage temperature histories, a finite-difference procedure has been used to solve the heat equation, with variable thermal properties. The data acquisition and the data analysis procedures are described in detail and then their application is illustrated for three midspan locations on the blade. The selected locations are the geometric stagnation point, 32.7 percent wetted distance on the suction surface, and 85.5 percent wetted distance on the suction surface. For these measurements, the turbine was operating at the design flow function and very near 100 percent corrected speed. The vane–blade axial spacing was consistent with the engine operating configuration. The results demonstrate that the magnitude of the heat-flux fluctuation resulting from the vane–blade interaction is large by comparison with the time-averaged heat flux at all locations investigated. The magnitude of the fluctuation is greatest in the stagnation region and decreases with increasing wetted distance along the surface. A Fourier analysis by FFT of a portion of the heat-flux record illustrates that the dominant frequencies occur at the wake-cutting frequency and its harmonics.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3