Engineering Resilience Quantification and System Design Implications: A Literature Survey

Author:

Yodo Nita1,Wang Pingfeng2

Affiliation:

1. Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS 67206 e-mail:

2. Associate Professor Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS 67206 e-mail:

Abstract

A resilient system is a system that possesses the ability to survive and recover from the likelihood of damage due to disruptive events or mishaps. The concept that incorporates resiliency into engineering practices is known as engineering resilience. To date, engineering resilience is still predominantly application-oriented. Despite an increase in the usage of engineering resilience concept, the diversity of its applications in various engineering sectors complicates a universal agreement on its quantification and associated measurement techniques. There is a pressing need to develop a generally applicable engineering resilience analysis framework, which standardizes the modeling, assessment, and improvement of engineering resilience for a broader engineering discipline. This paper provides a literature survey of engineering resilience from the design perspective, with a focus on engineering resilience metrics and their design implications. The currently available engineering resilience quantification metrics are reviewed and summarized, the design implications toward the development of resilient-engineered systems are discussed, and further, the challenges of incorporating resilience into engineering design processes are evaluated. The presented study expects to serve as a building block toward developing a generally applicable engineering resilience analysis framework that can be readily used for system design.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3