Macroscopic Interface Shape During Solidification

Author:

Wilcox W. R.1,Duty R. L.2

Affiliation:

1. Laser & Electronic Crystals Section, Aerospace Corporation, El Segundo, Calif.

2. International Business Machines Corp., Huntsville, Ala.

Abstract

Steady-state heat transfer considerations have been used to determine the macroscopic solid-liquid interface shape in solidification processes such as floating zone melting and crystal pulling. It was found by means of computer solutions that the Biot number haR/k, is the prime determinant of the shape of the interface. As the Biot number increases, the interface becomes increasingly concave into the solid. A uniform heat input model was formulated which gives analytical results close to the computer results. A one-dimensional analysis showed that the fractional error in the position of the isotherms caused by ignoring the heat carried by the motion of the crystal is approximately Vρcp−R/8hak. The effect of various heat transfer parameters on the dislocation generation caused by thermal stresses was also predicted and found to compare fairly well with experimental results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3