Influence of Uncertainty in Selected Musculoskeletal Model Parameters on Muscle Forces Estimated in Inverse Dynamics-Based Static Optimization and Hybrid Approach

Author:

Żuk Magdalena1,Syczewska Małgorzata2,Pezowicz Celina1

Affiliation:

1. Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław 50-370, Poland

2. Department of Paediatric Rehabilitation, The Children's Memorial Health Institute, Warsaw 04-730, Poland

Abstract

The purpose of the current study was to investigate the robustness of dynamic simulation results in the presence of uncertainties resulting from application of a scaled-generic musculoskeletal model instead of a subject-specific model as well as the effect of the choice of simulation method on the obtained muscle forces. The performed sensitivity analysis consisted of the following multibody parameter modifications: maximum isometric muscle forces, number of muscles, the hip joint center location, segment masses, as well as different dynamic simulation methods, namely static optimization (SO) with three different criteria and a computed muscle control (CMC) algorithm (hybrid approach combining forward and inverse dynamics). Twenty-four different models and fifty-five resultant dynamic simulation data sets were analyzed. The effects of model perturbation on the magnitude and profile of muscle forces were compared. It has been shown that estimated muscle forces are very sensitive to model parameters. The greatest impact was observed in the case of the force magnitude of the muscles generating high forces during gait (regardless of the modification introduced). However, the force profiles of those muscles were preserved. Relatively large differences in muscle forces were observed for different simulation techniques, which included both magnitude and profile of muscle forces. Personalization of model parameters would affect the resultant muscle forces and seems to be necessary to improve general accuracy of the estimated parameters. However, personalization alone will not ensure high accuracy due to the still unresolved muscle force sharing problem.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3